1,349 research outputs found

    Tunnelling between non-centrosymmetric superconductors with significant spin-orbit splitting studied theoretically within a two-band treatment

    Full text link
    Tunnelling between non-centrosymmetric superconductors with significant spin-orbit splitting is studied theoretically in a two-band treatment of the problem. We find that the critical Josephson current may be modulated by changing the relative angle between the vectors describing absence of inversion symmetry on each side of the junction. The presence of two gaps also results in multiple steps in the quasiparticle current-voltage characteristics. We argue that both these effects may help to determine the pairing states in materials like CePt3_3Si, UIr and Cd2_2Re2_2O7_7. We propose experimental tests of these ideas, including scanning tunnelling microscopy.Comment: 5 pages, 1 figure. Minor changes. Some new references added. Journal-ref. adde

    Signature of superconducting states in cubic crystal without inversion symmetry

    Full text link
    The effects of absence of inversion symmetry on superconducting states are investigated theoretically. In particular we focus on the noncentrosymmetric compounds which have the cubic symmetry OO like Li2_2Pt3_3B. An appropriate and isotropic spin-orbital interaction is added in the Hamiltonian and it acts like a magnetic monopole in the momentum space. The consequent pairing wavefunction has an additional triplet component in the pseudospin space, and a Zeeman magnetic field B\bf{B} can induce a collinear supercurrent J\bf{J} with a coefficient κ(T)\kappa(T). The effects of anisotropy embedded in the cubic symmetry and the nodal superconducting gap function on κ(T)\kappa(T) are also considered. From the macroscopic perspectives, the pair of mutually induced J\bf{J} and magnetization M{\bf{M}} can affect the distribution of magnetic field in such noncentrosymmetric superconductors, which is studied through solving the Maxwell equation in the Meissner geometry as well as the case of a single vortex line. In both cases, magnetic fields perpendicular to the external ones emerge as a signature of the broken symmetry.Comment: 16 pages in pre-print forma

    On the spin susceptibility of noncentrosymmetric superconductors

    Full text link
    We calculate the spin susceptibility of a superconductor without inversion symmetry, both in the clean and disordered cases. The susceptibility has a large residual value at zero temperature, which is further enhanced in the presence of scalar impurities.Comment: 12 pages, 3 figure

    Using Josephson junctions to determine the pairing state of superconductors without crystal inversion symmetry

    Full text link
    Theoretical studies of a planar tunnel junction between two superconductors with antisymmetric spin-orbit coupling are presented. The half-space Green's function for such a superconductor is determined. This is then used to derive expressions for the dissipative current and the Josephson current of the junction. Numerical results are presented in the case of the Rashba spin-orbit coupling, relevant to the much studied compound CePt3_3Si. Current-voltage diagrams, differential conductance and the critical Josephson current are presented for different crystallographic orientations and different weights of singlet and triplet components of the pairing state. The main conclusion is that Josephson junctions with different crystallographic orientations may provide a direct connection between unconventional pairing in superconductors of this kind and the absence of inversion symmetry in the crystal.Comment: 16 pages, 10 figure

    Andreev reflection from non-centrosymmetric superconductors and Majorana bound state generation in half-metallic ferromagnets

    Full text link
    We study Andreev reflection at an interface between a half metal and a superconductor with spin-orbit interaction. While the absence of minority carriers in the half metal makes singlet Andreev reflection impossible, the spin-orbit interaction gives rise to triplet Andreev reflection, i.e., the reflection of a majority electron into a majority hole or vice versa. As an application of our calculation, we consider a thin half metal film or wire laterally attached to a superconducting contact. If the half metal is disorder free, an excitation gap is opened that is proportional to the spin-orbit interaction strength in the superconductor. For electrons with energy below this gap a lateral half-metal--superconductor contact becomes a perfect triplet Andreev reflector. We show that the system supports localized Majorana end states in this limit.Comment: 14 pages, 3 figure

    Magnetic properties of superconductors with strong spin-orbit coupling

    Full text link
    We study the response of a superconductor with a strong spin-orbit coupling on an external magnetic field. The Ginzburg-Landau free energy functional is derived microscopically for a general crystal structure, both with and without an inversion center, and for an arbitrary symmetry of the superconducting order parameter. As a by-product, we obtain the general expressions for the intrinsic magnetic moment of the Cooper pairs. It is shown that the Ginzburg-Landau gradient energy in a superconductor lacking inversion symmetry has unusual structure. The general formalism is illustrated using as an example CePt3_3Si, which is the first known heavy-fermion superconductor without an inversion center.Comment: Published version, 14 pages, minor correction

    Phase diagram of a surface superconductor in parallel magnetic field

    Full text link
    Detailed theory of phase diagram of clean 2D surface superconductor in a parallel magnetic field is presented. Regular spin-orbital interaction of the Rashba type is known to produce inhomogeneous superconductive state similar to the Larkin-Ovchinnikov-Fulde-Ferrel (LOFF) state with Δ(r)cos(Qr)\Delta({\bf r})\propto \cos({\bf Qr}) at high magnetic fields, with QgμBh/vFQ \sim g\mu_B h/v_F. We consider the case of relatively strong Rashba interaction and show that at low temperatures T0.4Tc0T\leq 0.4 T_{c0} the LOFF-type state is separated from the usual homogeneous state by the first-order phase transition line. At higher temperatures new "helical" state with Δ(r)exp(iQr)\Delta({\bf r}) \propto \exp(i{\bf Qr}) intervene between uniform BCS state and LOFF-like state. One component of superfluid density tensor nsn_s vanishes on the second-order transition line between BCS state and helical state. Nonmagnetic impurities suppresses both inhomogeneous states, and eliminate them completely at Tc0τ0.11T_{c0}\tau \leq 0.11.Comment: 5 pages, 1 figure; v2: as published, minor correction

    Singularity resolution in gauged supergravity and conifold unification

    Get PDF
    We obtain a unified picture for the conifold singularity resolution. We propose that the gauged supergravity, through a novel prescription for the twisting, provides as appropriate framework to smooth out singularities in the context of gravity duals of supersymmetric gauge theories.Instituto de Física La Plat

    Spin fluctuations and superconductivity in noncentrosymmetric heavy fermion systems CeRhSi3_3 and CeIrSi3_3

    Full text link
    We study the normal and the superconducting properties in noncentrosymmetric heavy fermion superconductors CeRhSi3_3 and CeIrSi3_3. For the normal state, we show that experimentally observed linear temperature dependence of the resistivity is understood through the antiferromagnetic spin fluctuations near the quantum critical point (QCP) in three dimensions. For the superconducting state, we derive a general formula to calculate the upper critical field Hc2H_{c2}, with which we can treat the Pauli and the orbital depairing effect on an equal footing. The strong coupling effect for general electronic structures is also taken into account. We show that the experimentally observed features in Hc2z^H_{c2}\parallel \hat{z}, the huge value up to 30(T), the downward curvatures, and the strong pressure dependence, are naturally understood as an interplay of the Rashba spin-orbit interaction due to the lack of inversion symmetry and the spin fluctuations near the QCP. The large anisotropy between Hc2z^H_{c2}\parallel \hat{z} and Hc2z^H_{c2}\perp \hat{z} is explained in terms of the spin-orbit interaction. Furthermore, a possible realization of the Fulde-Ferrell- Larkin-Ovchinnikov state for Hz^H\perp \hat{z} is studied. We also examine effects of spin-flip scattering processes in the pairing interaction and those of the applied magnetic field on the spin fluctuations. We find that the above mentioned results are robust against these effects. The consistency of our results strongly supports the scenario that the superconductivity in CeRhSi3_3 and CeIrSi3_3 is mediated by the spin fluctuations near the QCP.Comment: 21pages, 13figures, to be published in Phys. Rev.

    Quantum transport in noncentrosymmetric superconductors and thermodynamics of ferromagnetic superconductors

    Full text link
    We consider a general Hamiltonian describing coexistence of itinerant ferromagnetism, spin-orbit coupling and mixed spin-singlet/triplet superconducting pairing in the context of mean-field theory. The Hamiltonian is diagonalized and exact eigenvalues are obtained, thus allowing us to write down the coupled gap equations for the different order parameters. Our results may then be applied to any model describing coexistence of any combination of these three phenomena. As a specific application of our results, we consider tunneling between a normal metal and a noncentrosymmetric superconductor with mixed singlet and triplet gaps. The conductance spectrum reveals information about these gaps in addition to how the influence of spin-orbit coupling is manifested. We also consider the coexistence of itinerant ferromagnetism and triplet superconductivity as a model for recently discovered ferromagnetic superconductors. The coupled gap equations are solved self-consistently, and we study the conditions necessary to obtain the coexistent regime of ferromagnetism and superconductivity. Analytical expressions are presented for the order parameters, and we provide an analysis of the free energy to identify the preferred system state. Moreover, we make specific predictions concerning the heat capacity for a ferromagnetic superconductor. In particular, we report a nonuniversal relative jump in the specific heat, depending on the magnetization of the system, at the uppermost superconducting phase transition. [Shortened abstract due to arXiv submission.]Comment: 19 pages, 15 figures (high quality figures available in published version). Accepted for publication in Phys. Rev.
    corecore